Minocycline inhibits hyperpolarization-activated currents in rat substantia gelatinosa neurons

نویسندگان

  • Nana Liu
  • Daying Zhang
  • Mengye Zhu
  • Shiwen Luo
  • Tao Liu
چکیده

Minocycline is a widely used glial activation inhibitor that could suppress pain-related behaviors in a number of different pain animal models, yet, its analgesic mechanisms are not fully understood. Hyperpolarization-activated cation channel-induced Ih current plays an important role in neuronal excitability and pathological pain. In this study, we investigated the possible effect of minocycline on Ih of substantia gelatinosa neuron in superficial spinal dorsal horn by using whole-cell patch-clamp recording. We found that extracellular minocycline rapidly decreases Ih amplitude in a reversible and concentration-dependent manner (IC50 = 41 μM). By contrast, intracellular minocycline had no effect. Minocycline-induced inhibition of Ih was not affected by Na(+) channel blocker tetrodotoxin, glutamate-receptor antagonists (CNQX and D-APV), GABAA receptor antagonist (bicuculine methiodide), or glycine receptor antagonist (strychnine). Minocycline also caused a negative shift in the activation curve of Ih, but did not alter the reversal potential. Moreover, minocycline slowed down the inter-spike depolarizing slope and produced a robust decrease in the rate of action potential firing. Together, these results illustrate a novel cellular mechanism underlying minocycline's analgesic effect by inhibiting Ih currents of spinal dorsal horn neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opioid-activated postsynaptic, inward rectifying potassium currents in whole cell recordings in substantia gelatinosa neurons.

Opioid-activated postsynaptic, inward rectifying potassium currents in whole cell recordings in substantia gelatinosa neurons. J. Neurophysiol. 80: 2954-2962, 1998. Using tight-seal, whole cell recordings from isolated transverse slices of hamster and rat spinal cord, we investigated the effects of the mu-opioid agonist (-Ala2, N-Me-Phe4,Gly5-ol)-enkephalin (DAMGO) on the membrane potential and...

متن کامل

Minocycline enhances inhibitory transmission to substantia gelatinosa neurons of the rat spinal dorsal horn

Minocycline, a second-generation tetracycline, is well known for its antibiotic, anti-inflammatory, and antinociceptive effects. Modulation of synaptic transmission is one of the analgesic mechanisms of minocycline. Although it has been reported that minocycline may suppress excitatory glutamatergic synaptic transmission, it remains unclear whether it could affect inhibitory synaptic transmissi...

متن کامل

Lidocaine Inhibits HCN Currents in Rat Spinal Substantia Gelatinosa Neurons

BACKGROUND Lidocaine, which blocks voltage-gated sodium channels, is widely used in surgical anesthesia and pain management. Recently, it has been proposed that the hyperpolarization-activated cyclic nucleotide (HCN) channel is one of the other novel targets of lidocaine. Substantia gelatinosa in the spinal dorsal horn, which plays key roles in modulating nociceptive information from primary af...

متن کامل

Interferon-gamma potentiates NMDA receptor signaling in spinal dorsal horn neurons via microglia–neuron interaction

BACKGROUND Glia-neuron interactions play an important role in the development of neuropathic pain. Expression of the pro-inflammatory cytokne →cytokine Interferon-gamma (IFNγ) is upregulated in the dorsal horn after peripheral nerve injury, and intrathecal IFNγ administration induces mechanical allodynia in rats. A growing body of evidence suggests that IFNγ might be involved in the mechanisms ...

متن کامل

DAMGO modulates two-pore domain K+ channels in the substantia gelatinosa neurons of rat spinal cord

The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying K(+) current. In this study, we examined whether a µ-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain K(+) channel (K2P) current in rat SG ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuropharmacology

دوره 95  شماره 

صفحات  -

تاریخ انتشار 2015